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Abstract

An analysis of two-dimensional scattering from a narrow groove

in an impedance plane is presented. The groove is represented by

a impedance surface and hence the problem reduces to that of scat-

tering from an impedance strip in an otherwise uniform impedance

plane. On the basis of this model, appropriate integral equations are

constructed using a form of the impedance plane Green's functions in-

volving rapidly convergent integrals. The integral equations are solved

by introducing a single basis representation of the equivalent current

on the narrow impedance insert. Both transverse electric (TE) and

transverse magnetic (TM) polarizations are treated. The resulting

solution is validated by comparison with results from the standard

boundary integral method (BIM) and a high frequency solution. It is

found that the presented solution for narrow impedance inserts can

be used in conjunction with the high frequency solution for the char-

acterization of impedance inserts of any given width.



1 Introduction

A topic of some concern in radar cross section studies is the scattering from

gaps or cracks that may exist where two component parts of a target come

together. Even if the crack is entirely or partially filled with some material,

it can still provide a significant contribution to the overall scattering pattern

of the target, and it is therefore necessary to develop methods for predicting

its scattering.

The scattering by a groove or an impedance insert in a ground plane

has already been considered by a variety of techniques. Integral equation

[1]-[3] and finite element-boundary integral solutions [4]-[7] have been effec-

tively used in this respect. Also, in the case of narrow grooves or impedance

inserts in a ground plane, closed form solutions have been obtained which

were found quite accurate for widths 0.1hA or less [8]-[10]. In this paper we

present a similar solution to the scattering from narrow grooves in an oth-

erwise uniform impedance plane. The solution is useful for computing the

scattering by grooves in coated ground planes and is intended to supplement

high frequency solutions which are suitable for large width impedance in-

serts [11],[12]. As in the solutions given in [13], the groove is simulated by

an impedance insert, thus, forming a three-part impedance plane (see Fig-

ure 1). The solution of the scattering by the illustrated three-part impedance

surface is obtained by introducing appropriate equivalent currents over the

extent of the middle impedance strip and then constructing an integral equa-

tion for the solution of these currents. This integral equation is obtained by

making use of the impedance plane Green's functions which are conveniently

expressed in terms of rapidly converging semi-infinite integrals. An impor-

tant aspect of our solution is the introduction of a one-term basis expansion

for the equivalent current, appropriate for small width impedance inserts.

The coefficient of the single basis function is found in closed form involving

integrals which are functions of the insert's width but independent of the

impedance characterizing the insert. Unfortunately, these integrals are also

functions of the background impedance, thus, precluding their tabulation for

different insert widths.

In the following sections we first proceed with the construction of the

integral equations for the three-part impedance plane for both TE and TM

incidences. The solution of the integral equations are then considered on the

assumption of a small width impedance insert. The validity of the results
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areexaminedby comparisonwith a closelyrelated BIM solution [14] and a
third order high frequency solution. We conclude by establishing the bounds

of the proposed small-width approximations.

2 Formulation

Consider a narrow filled groove of width w and depth d situated in an oth-

erwise uniform impedance plane as shown in Figure 1. The groove is illumi-

nated by the plane wave

Ei(orH i) = _,eJko(xc°'6°+_sin¢°) (1)

for E- (or H) polarization, where k0 = 27r/)_0 is the free space wavenumber

and ¢0 is the angle of incidence. We shall consider the E- and H-polarizations

separately.

2.1 E-Polarization

For TM-incidence, the rectangular groove can be approximated by a strip of

impedance [8]

rl _ j Zol_' tanh(pkod)
P

in which Zo is the free space intrinsic impedance,

(2)

(3)

d denotes the groove's depth, w is the groove's width, whereas e' and/_' are

the relative permeability and permittivity of the material filling the groove.

The scattering by the subject impedance insert can be represented by intro-

ducing the equivalent electric and magnetic currents

J=_xH M=Ex_ (4)

over the extent of the groove. These currents are assumed to radiate in the

presence of a uniform impedance plane satisfying the boundary condition

× × H = x E (5)
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Figure 1: (a) Geometry of the groove in an impedance plane (b) Impedance

model (c) Equivalent scattering problem

where rh is the associated normalized impedance (see Figure 1) and (E, H)

denote total fields. One can think of (5) as being imposed at Y = 0-, but at

V = 0 + E and H must satisfy the boundary condition

0x0xH=r/Z00xE -w/2<x<w/2, y=O + (6)

over the extent of the groove as dictated by the original problem. Using (4)

in (6) we obtain that (assuming E = kE2)

J, = -r/Zorn=, J, = rlZoEz (7)

i.e, 3 and M are linearly related over the impedance insert, and thus we need

only consider the solution of one of these, say J_.
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To solvefor Jz, we construct an integral equation by enforcing (6). First

we decompose Ez(E, = _. E) as

Ez = E_ + E_ (S)

where E_ denotes the scattered field and is equal to that radiated by J and

M in the presence of the uniform impedance plane (see Figure l(c)). On

using (7), E_ can be expressed as

[wl: J_(x')GsE(z,y/x',y')dx'
E_ = -j koZo J-_/:

Yo 0 f'_l_
(gy J-w�2 J_(x')GIE(x'y/x''y')dx' (9)

where GXE is the electric Green's function of the uniform impedance plane

(of normalized impedance rh). It is given by [15]

GIE(x,y/x',Y') -- J{H(2,4 (koq(X-X')' + (y-Y')2) T OE) (10)

where

-2 L °_ a'e-JVH(o_) (koq(X -x')2+ (Y + Y' - jr) 2) dv (11)

and a' = h_. On substituting (9) into (8) and then into the second of (7) we

obtain the integral equation

f_12 J_(x')VxE(x,y -'* 0 + I x', O)dx'
r/ejk°_c°'_° = YoJ=(z) + jkoZorl J-_l_

ff___f,,,/1 J,(x')GtE(x,y _ O+/x',O)d x' (12)+ Yo J-,_/2

to be enforced at y = 0 + for the solution of J_(x).

2.2 H-Polarization

For TE-incidence, the rectangular gap can be approximated by a strip of

normalized impedance [8]

rl = j Zop tan(pkod) (13)
f.



where

(14)
As before, equivalent currents are introduced and the application of the

impedance boundary condition to be satisfied over the groove yields the re-

lations (assuming H = _,Hz)

M, = _ZoJx, Ex = rlZoJ:_ (15)

where

E_= E'_+ E: (16)

The corresponding tangential scattered E field is given by

jZo kg+ g_(_')arH(_,v/_',v')e_'
E; - ko _ J-'_n

0 v,_/2

-,Zo_y J_._nJ=(x'lGm(z.y/z'.y'ldz' (17)

where Gm is the Green's function of the uniform impedance surface (of

normalized surface impedance _h). It is given by [15]

where

and/_' = k0r h. Substituting (17) into the second of (15) yields the integral

equation

sin¢°eJk°_c°_¢° = _o k2°+-_x 2 J-,.12

0 [,_12
j_w/2 g_(x')GtH(x, y --_ O+ /x', O)dx '+ Y-_y

•+_?Jx(x) (20)

for the solution of J_(x).
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3 Integral Equation Solution

Typically, the solution of (12) and (20) can be accomplished numerically

using standard techniques. Such a numerical solution is usually the only

alternative for moderately sized grooves, but if the groove is small (kow << 1)

then certain simplifications are possible. Once again, we shall consider the

E- and H-polarizations separately.

3.1 E-Polarization

It can be shown [16] that H_, and consequently Jz, is of 0(1) near each of

the impedance junctions (see Figure l(b)) provided neither rh nor r/are zero.

Thus, for kow << 1, we can assume that H_ is nearly constant at y = 0 + over

the extent of the groove. Based on this, we set

Jz(x) = xo (21)

where X_ is a constant to be found. Substituting (21) into (12) and point

matching at x = 0 yields

(22)
x_ = Yo+_(Ii+h)+/_

where the integrals I1,/2 and Ia are given by

koZo[_z= Ho(=)(kol_'l)d,'
11 - 2 J-,_l=

1]}
-koZo[,_/_ c_(o, 0/=',o)d=' (24)

/2 - 2 J-=/2

3 m

where 7 = 1.781 and

! ! !c,_(_,y/x,y)

jYo 0 [,_122 oy.,-w/_<'_(°'_/_"°)l_-.od_'

_0 °° olle-Ctt v

dv

(25)

(26)
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In carrying out the integrals in (24) and (25), G_E is computed numer-

ically. Because of the exponential factor e -_'_, the infinite integral defining

G'IE converges very rapidly. For our implementation G'IE, was evaluated by

subdividing the range of integration in 6 intervals and employing 4 point

Gaussian quadrature integration in each interval. When the argument of

the Hankel function is small, to avoid numerical difficulties, the integration

from 0 to 0.1 is carried out analytically by introducing the small argument

expansion of the Hankel function [17].

3.2 H-Polarization

From diffraction theory, it can again be shown that H_ is of O(1) and thus

we can approximate Jx by

Jx(_) = Xh (27)

where Xh is a constant to be found. Substituting (27) into (20) and point

matching at x = 0 yields

sin¢0 (28)
Xh = 11+7(I2+1)

The integrals 11 and I2 are given by

o2) [-/,

o [_/_ a;.(o,y/.,,o)[._.o _, (30)12 = -_y J-w/2

where

a',.(_,y/_',y') 0 O0 t I

i-i¢:) dv
k -- /

(31)

These can be evaluated numerically without difficulty since G'IH converges

rapidly due to the presence of the exponential factor e -_''. Again, it is

necessary to introduce the small argument expansion of the Hankel function

and carry out the integration from 0 to 0.1 analytically as was done in [17].
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4 Far Zone Scattered Fields and Echowidth

The far zone scattered fields are computed from (12) and (20) on using the

large argument approximation of the Hankel function. By evaluating the

integrals via the stationary phase method, we obtain the simple formulae

sin ¢
E_ = -wZox_[ _---Z%e-_(k°p-D '71 (32)

V z_rp 1 -_ 771sin ¢

/'L
H i = wZoXh e :(k0_ z) rh sin2 ¢

V2-p 1 + Th sin ¢

The corresponding echowidth is given by

a = k0 1 -{- 771sin ¢ (Xh sin2 ¢)2 H-pol

(33)

(34)

(35)

5 Validation of Results

The derived echowidth expressions are based on a low frequency solution of

the exact integral equation. They are, thus, expected to be valid for small

groove widths and it is, therefore, of interest to examine their accuracy limi-

tations as the width of the groove increases. For this validation, we used the

solution based on the BIM and a high frequency solution. The BIM refer-

ence solution was that presented by Moore and Ling [14] and applies to an

isolated conductor-backed dielectric gap, such as that shown in Figure 2. To

compare with this solution the dielectric coated conductor was approximated

by the normalized impedance

tan (36)

where er and #r are the permittivity and permeability of the dielectric layer

and d is the thickness of the dielectric. Also the gap impedances are computed

from (2) and (13).

In Figures 3 and 4 we compare our small width approximation with the

BIM data given in [14] for E and H polarizations, respectively. Each figure
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,_J ^ O,e,ectr,c

/"f''1"'/____ / / /_ / / / ,

Gap ( represented by _ulvalent Impedance tl )

Figure 2: Geometry of the gap at the junction of two semi-infinite dielectric

coatings

displays two curves, one corresponding to a gap of width 0.1_0 and the other

to a gap of width w = 0.2_0. The other gap parameters are given in the

figures. As can be expected, the agreement between the two solutions is good

for those gaps in the smaller thickness coatings. However, for the 0.2_o gap

in a d = 0.42_0 thick coating, our small width and impedance approximations

are no longer expected to be valid. Not surprisingly, the H-polarization

echowidth for this geometry as computed via the small width approximation

is 2-3 dB off from the BIM solution. The greater disagreement near grazing

is due to the inaccurate simulation of the dielectric coating by an impedance

surface.

Having validated our solution we now proceed with an assessment of its

accuracy range and limitation. Figures 5-8 show the backscatter echowidth

as a function of the insert's width for different values of _/1 and _/. The small

width and high frequency solutions 1 are compared in these figures. Of course,

by its derivation, the high frequency solution becomes more accurate as w

increases, whereas the presented small width approximation does the same as

w decreases. Consequently, the two solutions will have a certain intermediate

1The reference high frequency solution is a modification of that given in [11] using the

impedance junction diffraction coefficients [16]
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range of widths where agreement is likely to be expected. Figures 5 and

6 show E-polarization curves at some oblique (45 °) incidence. Similarly,

Figures 7 and 8 display some H-polarization curves at oblique and normal

incidences. From these figures, we observe that the presented approximate

solutions are indeed in good agreement for 0.15)_0 < w < 0.3_0, and in

many cases even outside this range. The conclusion that can be reached

from Figures 5-8 is that the combination of the simple closed form high

frequency and small width approximations provide an accurate evaluation

of the scattering by the three part impedance plane for all insert widths.

Specifically, the high frequency solution can be used for w > 0.25)_0, whereas

the small width approximation is suitable for smaller w.

6 Summary

Integral equations for the analysis of the scattering by a groove in an impedance

plane were constructed by representing the groove as an impedance surface.

The integral equations for the three-part impedance plane were solved on the

assumption of a small width impedance insert. The coefficient of the single

basis function for the equivalent current across the insert was explicitly given

in terms of integrals which were functions of the insert's width and the back-

ground impedance. The accuracy and limitations of the derived small width

approximations were evaluated by comparison with the boundary integral

method and a high frequency solution. From these comparisons, we inferred

that the presented solution was accurate for insert widths up to 0.25_0 and

could be extended up to 0.4)_o for near normal incidences. Thus, the pre-

sented approximate small-width approximation and the high frequency so-

lution complement each other for the evaluation of the scattering by a three

part impedance plane for all insert widths.
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Figure 3: E-polarization backscatter echowidth for a narrow gap in .a

grounded dielectric layer as in Figure 2. (a) w=0.1,_, d=0.2A and er = 2

(b)w=0.2A, d=0.1,X and Cr = 10
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